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PREFACE

The effects of the natural space environment on spacecraft design, development. and operation
are the topic of a series of NASA Reference Publications® currently being developed by the
Electromagnetics and Acerospace Environments Branch, Systems Analysis and Integration Laboratory.
Marshall Space Flight Center. The objective of this series is to increase the understanding of natural
space environments (neutral thermosphere, thermal, plasma. meteoroid and orbita! debris, solar. tonizing
radiation. geomagnetic and gravitational fields) and their effects wn spacecratt. thercby enabling program
management to more effectively minimize program risks and costs, optimize design quality. and achieve
mission objectives.

This primer, sixth in the series. describes the interactions between a spacecraft and the space
environment resulting from the influence of solar activity. Under certain conditions, these interactions
result in significant effects on the performance of a spacecraft. Thus, this publication describes some of
these eftects and presents key solar activity elements of the solar environment responsible for then.

See NASA RP 1350 for an overview of eight natural space environments (including solar
environment-solar activity) and their effects on spacecraft.

* NASA Reference Publications Natural Space Environments Series. available from the Marshall Space
Flight Center Electromagnetics and Acrospace Environments Branch. include the following:

“The Natural Space Environment: Effects on Spacecraft.” James. B.F.. Norton. O.A., Jr.. and
Alexander, M.B.. November 1994, NASA RP 1350.

“Spacecraft Environments Interactions: Protecting Against the Effects of Spacecraft Charging.” Herr,
J.R., and McCollum. M.B.. November 1994, NASA RP 1354

“Electronic Systems Failures and Anomalies Attributed to Electromagnetic Interference,” Leach. R.D..
and Alexander, M.B.. July 1995, NASA RP 1374,

“Failures and Anomalies Attributed to Spacecraft Charging.” Leach, R.D.. and Alexander. M.B.,
August 1995, NASA RP 1375.

“Spacecraft System Failures and Anomalies Attributed to the Natural Space Environment.”
Bedingficld. K.1... Leach. R.D.. and Alexander, M.B.. August 1996, NASA RP 1390,
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REFERENCE PUBLICATION

SPACECRAFT ENVIRONMENTS INTERACTIONS:
SOLARACTIVITY AND EFFECTS ON SPACECRAFT

INTRODUCTION

The natural space environment refers to the environment as it occurs independent of the presence
of a spacecrafl: thus, included are both naturatly occurring phenomena such as atomic oxygen (AO) and
atmospneric density, ionizing radiation. plasma, etc.. and a few man-made factors such as orbital debris.!
Solar activity. manifested in the emission by the Sun of significant amounts of mass and energy. aftects
the local solar environment and the extended solar environment in terrestrial space. Figures in the
appendix of this document list the natural space environments (including solar environment-solar
activity) and major areas of interaction with spacecraft systems.

Understanding the natural space environments and their effects on spacecraft enables program
management to more eftectively optimize the following aspects of a mission: !

o Risk—Increasingly. experience on past missions is enabling NASA to provide statistical
descriptions of important environmental factors, thus enabling the manager to make informed
decisions on design options.

¢ Cost—Seclection of design concepts and mission profiles, especially orbit inclination and
altitude. which minimize adverse environmental impacts, is the first important step toward a
simple. effective, high-quality spacecraft design and low operational costs.

o Quality—New environment simulators and models provide effective tools for optimizing
subsystem designs and mission operations.

o Weight—Consideration of environmental effects carly in the mission design cycle helps to
minimize weight impacts at later stages. For example. carly consideration of directionality
effects in the orbital debris and ionizing radiation environments could lead to reduced
shiclding weights.

o Verification— A unified. complete environments description coupled with a clear mission
profile provides a sound basts for analysis and test requirements in the verification process and
climinates contradictory. unnecessary, and incomplete performance assessments.,

s Science and Technology —The natural space environment is not static. Not only is our
understanding improving, but also new things occur in nature that have not been observed
before (for example. a new transient radiation belt recently encountered). Perhaps more
importantly. engineering technology is constantly changing and with this. the susceptibility of
spacecraft to environmental factors. Early consideration of these factors is key to converging
quickly on a quality system design and to successtully achieving mission objectives.



This primer provides an overview of the solar environment und the key role it plays regarding the
space environment relative 1o the design and operation of spacecraft for low-Earth and geosynchronous
orbits and deep space trajectories. An understanding of the scope and role of solar activity is needed
because its effects are a serious engineering concern for spacecraft operating in terrestrial space.

The region of terrestrial space (fig. 1) extends from the base of the ionosphere (about 60 km
above the surface of the Earth) to the boundary of the magnetosphere beyond which interplanetary space
is unaffected by the Earth.? This distance is about 95000 km above the surface of the Earth (16 Earth
radii) in the sut.ward direction and several times that in the anti-sunward direction. Although the region
is loosely referred to as the magnetosphere, strictly speaking, this term means the (major) part of
terrestrial space into which the Earth’s magnetic field extends.”
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Figure 1. Schematic view of terrestrial space.?

Processes within terrestrial space are partially controlled by level of solar activity that varies
more or less cyclically with an average period of 11 years (fig. 2). The clectromagnetic radiation emitted
by the Sun varies (although not much in the visible portion of the spectrum) as does the solar wind, the
solar magnetic field. and the production of solar cosmic rays. Although the exact level of solar activity
cannot be predicted accurately, the phase within the 1-year period can be established. In addition,
plasma. radio noise. and energetic particles tend to be emitted from localized regions on the Sun’s
surface. These regions and some coronal features persist longer than the solar rotation period of 27 days.
Since these affect the Earth only when they face it. enhanced solar activity can be estimated 27 or more
days in advance.’
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Figure 2. Solar cycle as represented by years mean sunspot number.



Despite documented scientific observations of the existence of cyclic behavior since invention of
the telescope in the 17th century. the regular variation of solar activity, known as the 1l-year sunspot
cycle. was not discovered until the mid- 19th century. Perhaps the carliest recorded physical elfects of
solar activity on mankind were intermittent telegraph outages in the late 1850°s. Not until the 1940°s
were systematic scientific obseryations of particulate emissions from the Sun made at Earth.? The effects
on communications, and subsequently spacecratt. have significantly increased awareness ot the key role
variations in solar activity play in the engineering and operation of spacecraft systems.

Elements of solar activity, solar activity influences on the space environment. solar activity
effects on spacecrafi. and prediction of solar activity are discussed in the following sections.,



ELEMENTS OF SOLARACTIVITY

Ihe Sun emits huge amounts ol mass and energy-—cnoug CLOV TN one second 1o power
eral mulhon cars tor over a billion vears, This remendous emission of energy his importint
conseguences o spacecralt desien development, and operation. Over short pertods of thme m certam
lowCalions, solar imtensi RIS ITHLE |.||-11|':'» beas thoueht that a nugor Tactor cansime 1hese fluctuation

is the distortion ol the Sun™s laree muaenctic feld due o its difterential rotanon Fwor of the most
commaon indicators of tocally enhanced magnete Dields are sunspots and ares. Sunspots are probably
the most commonly know n solar actv ity teature, The average sun pol number varies W ith a perod of
thout 11 vears. Fach evele s defined as beomning with solar minmmun (time ol Toswest sunspot nunh
and lasting until the tollow me minmmum. A solar flare 1s @ highly concentraed explosive release of

e vithin the solar atmosphere. Radiation from o solar thare extends from radio 1o N1

frequenci Solur tlares are differentated according to total encrey released UHtimatesy. the total enerey

nitted 1s the deciding factor in the seventy ol a Hare flects on the natural space environment

While enerey 1s not entted untformly or steadily over the Sun s surfiace “solar storms are
observed i which the local energy emission appears enhanced (hig. 3) I'hese storms, which may Last tog
many months. are manilested by dark sunspots surrounded by plages (large areas brighter than average)
nrommency olumes of dense cool vas su i'-.-l.l|‘..1f-- ¢ the surface ), nonuntform structures i the
outer atmosphere. and a complex contiguration of ¢ hanced mugnetc ficlds, Frequencey of occurrence of
this activity reaches a peak approximately every T years but the maenetic hields return to the same

cneral conticuration -'||_ every 22 vears. appeil that solar activity as caused by anmteraction
hetween maenetic fields and the nonuniform rotation of the Sun. The Sun’s equator rotates fuster than s
poles, und the shearing action on the gas contorts the Tields into configarations that produce acuvity
Although this appears feasible, many details ol the tormation, neamenance. and dissipation ot soki

activily are vet to be l.Htit'!*-I-u‘lsl

Fiew Sobar actrs e reLion on Sun surla




Although Tares are pust one form of solar activity, their practucal importance and mtriguing.
dynamic nature warrant special attention. Flares are manitested by an explosive release of high-cnergy
radiation and. occasionally, particles from very localized areas of magnetically complex active regrons
This release occurs sporadhically and involves energies that are extreme, . arge by earthly standards
Large solar magnetic helds seem to accomulate and store energy i an unstable configuration. Return 1o
a more stable and lower-encrgy conhiguration 1s somchow triggered and energy rapidly released. Detals
ol this energy butldup, storage, and release are not known. Also nmportant, but not understood, is the
mechanism by which particles are aceelerated o extremely high energies and released.” The frequency

of occurrence and magniuode of solur thire events vary as a funchion of solar activity (hig. 4)

1t T T T T T 1 ' T 250

10! 200
z o
s . A 15
e 10 150 a
@ =
— =
L =
o =
= 102 100} 3
" il -
a- =

i 50

11 0

!
1955, 1960 1965 1970 1975 1980 168t

Calendar Year
Figure 4. Vanation of solar flare proton events as a lunction of solar activity

I'he cause of all forms ol solar activity can be traced 1o convection and circulation within the Sun
Fhe convective zone ot the Sun s o giant heat engine that converts o small fraction of the outward
Howmg heaomto convective maonons. and from them mto magnene helds and hydrodynanuce and

hydromagnctic waves. From these phenomena arise the sunspol. prominence., Hare, coroma, solar wind
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SOLAR ACTIVITY INFLUENCES ON SPACE ENVIRONMENT

The Sun (including its light output. magnetic configuration. and output of solar wind).
magncetosphere. ionosphere. and atmosphere are a coupled physical sy stem whose responses to changes
in solar activity are pervasive and complex. Because man-made systems typreally interact with a very
small segment of this system. itis extremely difficult to draw a stranght line between cause and effect for
individual events or measurements. Figure 5 illustrates the coupled Sun-Earth system * Sivomfluences of
solar activity on the natural space environment are discussed below.

.
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Figure 5. Polar view of interplanctary space.”

Solar Particle Events

One of the most direct influences ot solar activity on the natural space environment is sporadic
occurrence of very energetic (10 MeV o above 1 GeV) solar particle events in association with solar
flares. Although solar particle events are fairly infrequent ton average, a few events per year). they
represent the most energetic. tangible manifestations of solar activity. These events have important
consequences for the natural space environment and spacecraft systems operating within that
environment.?

The overall importance ot an individual event depends on the maximum intensity and length of
the eventand relative abundance of the higher-energy component and heavy nuclei. Avide from its
clemental composition, virtually all important charactzristics of i solar particle event are influenced
strongly by the location (longitude primarily) of the originating solar flare relative to the footprint of the
interplanetary magnetic field line that s instantancoushy “connected™ to Farth (fig. Si.



(ceomagnetic Activity

While sunspots have virtually no effect on geomagnetic activity. other solar parameters do atfect
the natural space environment and tend to be modvlated along with sunspot numbers in an H-year cycle.
Also, the modulation arvphtude of many solar parameters tracks the sunspot number fairly closely. Thus,
one might expect geomagnetic activity to be modulated at the 1-year sunspot cycle. Figure 6 shows this
to be so and plots yearly averages ot sunspot number and index ot geomagnetic activity from 1870 to
1979 (including data from solar cycles 11 to 21). The geemagnetic activity index shows a clear
modulation corresponding to the T -vear sunspot cycle. However. the annual averages or ccomagnetic
activity do not maximize at the ume of sunspot maximum (sunspot masima are marked with arrows),
nor do cyclic peaks correspond in magnitude to the amplitude of the nearest sunspot maximum. The
geomagnetic index tends to have a major peak during the declining phase of the sunspot cycle and a
secondary peak near the senspot maxunum. This trend s observed also in the frequency of occurrence of
major geomagnetic storms.?
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Figure 6. Annual mean of sunspot numbers and geomagnetic activity index.”

Hustrated in the top halt ol figure 715 a huge interplanctary disturbance that struck the Earth's
protective magnetic ticld on October 15, 1995, and produced a magenetic storm or auroral displays
(*Northern Lights™) that persisted for two days. A giant magnetic cloud contaming hot gas from the <olar
corona was ejected from the Sun toward the Earth at 2.1 miltion nules per hour and detected by NASA'S
WIND spacecraft instruments halt an hour before it encountered barth.
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Neutral Atmosphere

Solar activity atfects Earth’s neutral atmosphere at virtually all altitudes. As one might expect.
variations in the neutral atmosphere are more dramatic and occur on shorter time scales with increasing
altitude. Indeed. order-of-magnitude variations in the neutral atmosphere density can occur at altitudes
where low-Earth satellites orbit. These effects have signiticant operational consequences on satellites
orbiting through low-altitude regions. space vehicles reentering the atmosphere. and systems tracking
and monitoring satcllites and space debris. Also. variations in composition, particularly in highly
reactive constituents such as AO. can have important impacts on survivability and operation of space
systems. Although solar cycle variation in AO is not significant at altitudes below about 200 km. the AO
concentration at higher altitudes (500 to 800 km) can vary over the solar cycle by a factor of 1000. High
concentrations of AO can react chemically with various surfaces of a spacecraft or sensor, and can lead
to mass loss from external structures and degrade sensor performance.*

The most dominant aspect of solar variability that leads to modulation of upper atmospheric
parameters is the Sun’s output of radiation in the extreme ultraviolet wavelength band. All solar extreme
ultraviolet flux incident on Earth’s atmosphere is absorbed within the uppermost layer of the atmosphcre
(thermosphere). Over an | 1-year solar activity cycle, the solar extreme ultraviolet emission varies by a
factor of about 2 in integrated intensity (compared to <0.2 percent variability in light output in visible
portion of the spectrum). This variation in irradiance can cause substantial solar cycle variations in the
composition. temperature, density. and wind distribution of Earth’s thermosphere. Density variation is
<hown in figure 8.

Enhanced geomagnetic activity correlated with solar activity is another (though secondary)
mechanism by which the upper atmosphere of the Earth is influenced by variations in solar activity.
Geomagnetic effects of Earth’s upper atmosphere tend to be isolated to the high-altitude regions and
more sporadic and episodic than global effects of long-term variability in the Sun’s extreme ultraviolet
emission. The principal effect of geomagnetic activity on the neutral atmosphere is intense localized
warming of the upper atmosphere in the polar and auroral regions. This warming is caused by kinetic
heating from the precipitation of energetic charged particles and by Joule heating from enhanced
ionospheric currents in the auroral zone.?

lonosphere

Earth’s ionosphere is a relatively thin layer of partially ionized magnetized plasma extending
from about 80 to 500 km altitude. Typical plasma densities in the ionosphere range from 10 to 107 per
cubic centimeter. compared with neutral densities of about 107 1o 10'© per cubic centimeter. Because of
strong coupling between the ionosphere and Sun. Earth’s atmosphere, and magnetosphere, the
phenomenology of the ionosphere is complex and under scientific investigation for years. To categorize
the various physical processes that govern ionospheric structure. the ionosphere is subdivided into two or
three layers in altitude. two or three zones in latitude. and separated by day or night.}

10
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Magnetospheric Plasmas

The high-altitude ionosphere is linked strongly to the magnetosphere by the geomagnetic field.
and its vartations are driven mainly by geomagnetic activity originating in the magnetosphere. Figure 9
shows a noon-midnight meridian cross section of the typical configuration of the geomagnetic tield
within the magncetosphere. The interaction of solar wind. which flows at supersonic speed (250 to 800
km/s) relative to Earth, with magnetosphere causes the formation of a bow shock at distances of about
20 Earth radii upstream. The region of hot compressed solar plasma between the bow shock and
boundary of the magnetosphere (the magnetopause ) is the magnetosheath. Size of the magnetosphere

varies greatly and is determined mainly by a balance between solar wind dynamic pressure and magnetic

pressure within the magnetosphere
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Figure 9. Meridional view of Earth’s magnetosphere.

Magnetospheric Energetic Particles

Variations in karth’s trapped energetic particle environment caused by solar activity are
charactenized by variations of geomagnetic activity. Fluxes of approximately megaelectronvolts (MeV)
clec trons in the outer zone of Earth's radiation belts are known to increase by two to three orders of
ma; nitude in response to a geomagnetic storm. These flux increases can last two or three weeks
foll 'wing the storm. Variations of the trapped energetic electron environment maximize in the heart of
the outer sone. about * 5 Earth radii distance. Modest fluctaations are observed deeper in the radiation
belts in response to wie most extreme geomagnetic storms. One of the first eftects of a gecomagnetic
storm onset is an energetic electron flux decrease. Major storms. however. produce enhanced fluxes of
energetic electrons in the outer zone tinternal to 2 synchronous orbit). Thus, the effects of solar activity
include prompt. direct effects from enhanced levels of solar ultraviolet. X rays. and energetic particles.
Indirect eftects of enhanced geomagnetic activity are caused by interaction between the solar wind and
terrestrial magnetosphere-ionosphere-atmosphere system.?



SOLARACTIVITY EFFECTS ON SPACECRAFT

Solar activity has a critical impact on most elements within the ambient environment a spacecratt
experiences. Variations in solar activity impact the upper atmosphere (thermosphere) density levels.
overall thermal environment, plasma density levels, meteoroids/orbital debris levels, severity of ionizing
radiation. and characteristics of the Earth’s magnetic tield. The solar cycle also impacts mission planning
and operation activities. For example. when solar activity is high, ultraviolet radiation from the Sun heats
and expands the Earth’s upper atmosphere. increasing atmospheric drag and orbital decay rate of
spacecraft. Solar flares, a major contributor to the overall radiation environment. can add to accumulated
radiation dose levels .nd single event phenomena that affect electronic systems.!

The primary operational effect of variability of the upper atmosphere is neutral density on
satellite drag. Short-term variations in density, which occur during geomagnetic events. perturb the
orbital motions of satellites and lead to difficulties in tracking and cataloging objects at low-orbit
altitudes. These short-term perturbations lead also to uncertainties in position for reentry of orbiting
vehicles. Long-term variations in atmospheric density. such as those driven by solar cycle variations in
the extreme ultraviolet irradiance. have order-of-magnitude effects on the lifetime of satellites in low-
Earth orbit (LLEO). Figure 10 1s an cxamplv of satellite lifetime as a function of F_ solar flux for
circular orbit at various initial altitudes o7
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Figure 10. Satellite lifetime versus solar flux.?
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Many spacecraft surface materials are susceptible to attack by AQO. a major constituent of the
LEO thermosphere region. Due to photo dissociation. oxygen varies with altitude and solar activity.
Simultancous exposure to ultraviolet radiation, micrometeoroid/debris damage. sputtering. or
contamination can aggravate AQ cftects and lead to serious deterioration of mechanical. optical, and
thermal properties of some material surfaces. A related phenomenon that may be of concern for optically
sensitive experiments is spacecraft glow. Optical emissions are generated from metastable molecules
excited by impact on the spacecraft surface. Investigations show that the surface acts as a catalyst. thus,
intensity depends on type of surface material.!

During heightened solar activity, three principal elements of the natural space environment attack
spacecraft with increased vigor. Ambient plasmas charge spacccraft surfaces and cause arc discharges
across the vehicle. High-energy clectrons penctrate a spacecraft und build high charges in insulation on
coaxial lines. Protons and other charged particles disrupt computer memories or even damage the
structure of semiconductor microelectronics.* Spacecraft damage also includes decreased power
production by solar arrays, fatlure of sensitive electronics. increased background noise in sensors, and
radiation exposure to members of the crew. Modern electronics are becoming increasingly sensitive to
ionizing radiation,’

The geomagnetic ficld influences motions of particles within the Earth’s orbital environment and
deflects incoming high-energy particles associated with cosmic rays. These high-energy particles may
charge spacecraft surfaces. causing tuilure of or mterference with. spacecraft systems. Due to dipole
field geometry, the magnetic ficld strength of the Earth is lowest over the soathern Atlantic Ocean. This
causes a higher concentration of trapped radiation in the region. In the vicinity of this anomaly a
spacecraft may encounter electronics “upsets™ and instrument interference. An accurate depiction of the
geomagnetic field is needed to properly size magnetic torquers used in the guidance. navigation. and
control system of a spacecraft.!

Geomagnetic storms, disturbances in the geomagnetic field lasting one or more days, may affect
orbiting spacecraft. During a geomagnetic storm large numbers of charged particles are dumped from
the magnetosphere into the Earth’s atmosphere. These particles ionize and heat the atmosphere through
collisions. The heating is first obseryed minutes to hours after the magnetic disturbance bevins, The
eftfects of geomagnetic heating extend from 300 kim to well over 1000 kim and may persist for 8 to
12 hours after the disturbance ends.!

Orbiting through this ionized portion of the atmosphere. a spacecraft may be subjected to an
unequal flux of 1ons and clectrons and develop an induced charge. Plasma flux to the spacecraft surface
can charge the surface and disrupt operation of clectrically biased instruments. In LEO vehicles travel
through dense but low energy plasma that negatively charges them because their orbital velocity is
greater than the ion thermal velocity but stower than the electron thermal velocity. Thus, electrons can
impact all surtaces: 1ons can impact only ram surfaces. LEO spacecraft have charged to thousunds of
volts but charging at geosynchronous orbits is a greater concern, i.c., biased surfaces. such as solar
arrays. can affect the floating powential. Magnitude of charge depends on the type of grounding
configuration used. Spacecratt charging may cause biasing of instrument readings, arcing that upsets
sensitive clectronices. increased current collection, retraction of contaminants, ion sputtering that
accelerates erosion of materials, and other electrical disturbances.!



The most severe spacecraft surface-charging events (and resulting electrostatic dischary °s) tend
to oceur in the midnight-to-dawn local time sector. when spacecraft encounter high fluxes of hot drifting
plasma sheet electrons. The probability of occurrence and severity of spacecraft charging events are
directly correlated with periods of enhanced geomagnetic energization. Severe charging events tend to
oceur during equinox. wiwa geosynchronous vehicles enter and exit Earth eclipse once cach day
(geomagnetic storms also show seasonal modulation). In sunlight photoelectron flux emitted from the
spacecraft tends to balance current from the surrounding plasma. During eclipse a spacecraft cannot emit
a photoelectron flux to balance the hot electron current from plasma, thus, clectrical charging of the
vehicle to several Kilovolts is possible. Upon exiting the eclipse various surface materials discharge at
different rates and create the possibility of large differential potentiaus and discharges between external
spacecraft components. Table 1 gives additional consequences of major solar activity events.

Table 1. Examples of some consequences of major solar activity events®

Earth and Space Systems:
e “Hitn™ on deep space satellites e.g.. Magellan and Galileo)
o Fuilures. serious power panel degradation, and lesser problems on geostationary satellites
o Navigation satetlite signal problems from half-geostationary orbit

* Low altitude satellites tumbling and sensor problems

Energetic Particles:
e Degradation of photo-sensitive satellite components (star trackers and powcer pancls)
o Deep diclectric charging of satellite parts
* Surtace charging on satellites
e Single Event Upsets (SEUY)
¢ “Flashes™ in astronauats” eyes
*  Radiation exposure on high-altitude aircrait
Geomagnetic Field:
e Great magnetic storms during some events and not others

*  Large auroral electrojet substorms during quiet midlatitude conditions




PREDICTION OF SOLAR ACTIVITY

Solar activity effects on spacecraft include orbital lifetime. materials, control. communications,
charging, thermal. shielding. power. particle impacts. ete. The optimum design for a spacecraft would be
Lo operationally accommodate the natural space environment resulting from the most intense solar
activity conditions expected during its lifetime. Since the maximum solar activity that may occur is an
unknown. this is not possible. Even if one did know. it would not be economically or engineeringly
feasible to build such a spacecraft. Thus. while deriving the best practical design requirements for the
natural environment, it is still operationally important to obtain the best predictions possible, short- and
long-term. of anticipated environmental conditions due to solar activity.

Given the resources available. predictors of solar activity and the natural space environment do a
commendable job. Present predictions. however, are often insufficient for customers to take specific
mitigation actions or make specific planning decisions. Requirements for predictions. alerts, and
warnings are established by the users of these services. Few current requirements are fully met; some are
not met at all. Nowcasts refer to the fusion of all available observations into a coherent and realistic
representation of the state of the natural space environment at the time of the observations.
Synchronizing and merging the diverse observational data sets pose significant scientific and technicul
challenges. Sophisticated. physics-based models are needed to fill areas with no observations. Today's
solar activity and natural space models are just starting to approach this goal.” For example. in much the
same way as meteorologists have developed criteria for probable tornadic activity within the Earth’s
atmosphere. solar scientists arc making progress tow o predicting sites for flare activity on the Sun. As
more is learned about the Sun’s behavior, realistic modeling and accurate predictions of the Sun’s future
behavior can be expected.

Correfation between solar activity and disturbances in the near-Earth magnetosphere. tonosphere.
and atmosphere is well documented. Unfortunately. very tew fong-term quantitative predictions can be
made regarding the expected effects of an extreme solar maximum on the near-Earth environment or
complex systems operating in that environment. Scientific knowledge and practical experience gained
have yet to yield an adequate state-of-the-art capability for short-term predictions of occurrence of
geomignetic storms based on real-time observations of solar activity. However. progress is being made
in this area and a number of important qualitative predictions are made with high confidence.?

The regular modulation of the solar cycle has been repeated sufficiently for many investigators to
identify patterns in the activity cyeles and form the basis for statistical predictions of future solar
activity. Unfortunately. the cycle-to-cycle coherence in magnitude of solar activity is insufficient to yicld
predictive capabilities with high confidence levels. Furthermore. evidence exists for very long-term
trends in solar activity. which leads some to believe they are viewing a continually changing Sun.
Perhaps most importantly. virtually all predictive capabilities published 10 date (with exception of a few
technigues based on the solar model) are statistically based rather than physically based: they rely on
observed (statistical) patterns in the data rather thun a4 quantitative understanding of the physical
mechanisms that cause modulation of solar activity.?
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At present. no rehiable short- or long-range methods of predicting solar activity exist. The
difficulty is illustrated by the wide range of predictions made for the last solar cycle and those
developing for the upcoming cycle. Because of the wide range of predictions. spanning nearly the full
extent of observed sunspot numbers, one would expect some of the technigues to vield by pure chance
the correct value.' One test. however, does not prove that a deterministic method will work in the
future. Due to the importance of solar activity tfor spacecraft design and operation, the search for more
rehiable physically based prediction models and statistical models with better confidence bounds should
continue vigorously.

Variability of the solar cycle has been statistically described using a proxy parameter. the
i0.7-cm solar radio flux (F |, 7). The Environments Team of the Marshall Space Flight Center
Electromagnetics and Aerospace Environments Branch estimates and publishes a monthly solar activity
memorandum that gives intermediate (months) and long (vears) range estimates of the 13-month
smoothed value for both the 10.7-cm solar radio flux and the geomagnetic activity index (A ) with
associated confidence bounds. This information is provided primarily for use as input data for upper
atmospheric models to insure compatibility in calcufations made for spacecratt orbital lifetime
predictions,



CONCLUSION

For optimum efficiency and effectiveness, definition of the tlight environment is important very

carly 1n the design cycle of a spacecratt. From expericnce, the carlier the environments specialist
becomes involved in the design process, the less potential exists for negative environmental impacts
(redesign, work-arounds. etc.) on the program. Key steps in defining solar activity and the role it plays in
the space environment definition and interpretation for a particular program include the following:!

¢ Definition of the solar environment is critical. Since delinition depends on orbit of the

spacecraft and phase of the solar cycle (solar activity). environmental eftects should be
reviewed prior to final orbit selection.

Determination of environmental limiting factors is next. Not all effects of the space
environment critically impact a particular mission. The environments specialist presents
environmental limiting factors and ofters design or operation solutions for a program. This
requires a close working relationship among the environments specialist. design team, and
program management. Oncee the limiting factors are determined. trade studies are usually
required to establish the appropriate flight environment.

Coordination of environmental requirements follows. Atter definition of the space environment
and limiting factors comes establishing a coorcinated set of natural space environment
requirements compatible with the solar activity influences. These requirements are derived
during the definition phase after much interaction among the designers. development
engineering statt. environments specialists, and program management.

Interpretation of these requirements by the environments specialist ensures that the solar
activity etfects on the space environment design requirements are understood throughout all

phases of a spacecraft program.

This primer provides an overview of solar activity and its etfect on spacecraft design,

development. and operation. An understanding of solar activity and its effects on the space environment
enables program management and space vehicle designers and operators to more effectively minimize
program risks and costs. optimize design quality, and achieve mission objectives. Questions or
comments should be directed o the MSFC Electromagnetics and Acrospace Environments Branch,
Steven DL Pearson, 205-544-2350.
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